Re: Alte Quine Mc Cluskeys und Übungen.

 0 0 0 0 0    0
 1 0 0 0 1    1
 2 0 0 1 0    0
 3 0 0 1 1    0
 4 0 1 0 0    0
 5 0 1 0 1    0
 6 0 1 1 0    1
 7 0 1 1 1    1
 8 1 0 0 0    1
 9 1 0 0 1    0
10 1 0 1 0    1
11 1 0 1 1    0
12 1 1 0 0    1
13 1 1 0 1    1
14 1 1 1 0    0
15 1 1 1 1    1


 1 0 0 0 1    1
 6 0 1 1 0    1
 7 0 1 1 1    1
 8 1 0 0 0    1
10 1 0 1 0    1
12 1 1 0 0    1
13 1 1 0 1    1
15 1 1 1 1    1


Gruppe 1:
 1 0 0 0 1    1
 8 1 0 0 0    1
Gruppe 2:
 6 0 1 1 0    1
10 1 0 1 0    1
12 1 1 0 0    1
Gruppe 3
 7 0 1 1 1    1
13 1 1 0 1    1
Gruppe 4
15 1 1 1 1    1

1               0 0 0 1
8;10            1 0 - 0
8;12            1 - 0 0
6;7             0 1 1 -
12;13           1 1 0 -
7;15            - 1 1 1
13;15           1 1 - 1


7;15            - 1 1 1
8;12            1 - 0 0
8;10            1 0 - 0
13;15           1 1 - 1
6;7             0 1 1 -
12;13           1 1 0 -
1               0 0 0 1


7;15            - 1 1 1
8;12            1 - 0 0
Gruppe 1
8;10            1 0 - 0
Gruppe 3
13;15           1 1 - 1
Gruppe 2
6;7             0 1 1 -
Gruppe 2
12;13           1 1 0 -
1               0 0 0 1


7;15            - 1 1 1
8;12            1 - 0 0
8;10            1 0 - 0
13;15           1 1 - 1
6;7             0 1 1 -
12;13           1 1 0 -
1               0 0 0 1

                1   6   7   8   10  12  13  15
7;15                    *                   *
8;12                        *       *
8;10                        *   *
13;15                                   *   *
6;7                 *   *
12;13                               *   *
1               *


                1   6   7   8   10  12  13  15
8;12                        *       *
8;10                        *   *
13;15                                   *   *
6;7                 *   *
1               *

y := (d and not b and not a) or (d and not c and not a) or (d and c and a) or (not d and c and b) or (not d and not c and not b and a)

 0 0 0 0 0    1
 1 0 0 0 1    1
 2 0 0 1 0    0
 3 0 0 1 1    1
 4 0 1 0 0    0
 5 0 1 0 1    1
 6 0 1 1 0    1
 7 0 1 1 1    0
 8 1 0 0 0    0
 9 1 0 0 1    0
10 1 0 1 0    1
11 1 0 1 1    0
12 1 1 0 0    0
13 1 1 0 1    0
14 1 1 1 0    0
15 1 1 1 1    0


 0 0 0 0 0    1
 1 0 0 0 1    1
 3 0 0 1 1    1
 5 0 1 0 1    1
 6 0 1 1 0    1
10 1 0 1 0    1

Gruppe 0
 0 0 0 0 0    1
Gruppe 1
 1 0 0 0 1    1
Gruppe 2
 3 0 0 1 1    1
 5 0 1 0 1    1
 6 0 1 1 0    1
10 1 0 1 0    1

0;1     0 0 0 -
1;3     0 0 - 1
1;5     0 - 0 1
6       0 1 1 0
10      1 0 1 0

            0   1   3   5   6   10
0;1         *   *
1;3             *   *
1;5             *       *
6                           *
10                              *

y := (not d and not c and not b) or (not d and not c and a) or (not d and not b and a) or (not d and c and b and not a) or (d and not c and b and not a)

        b a x   b a y
0       0 0 0   1 0 1
1       0 0 1   0 1 1
2       0 1 0   1 0 0
3       0 1 1   1 1 1
4       1 0 0   1 1 0
5       1 0 1   1 0 0
6       1 1 0   1 1 1
7       1 1 1   0 1 1


        b a x   b
0       0 0 0   1
1       0 0 1   0
2       0 1 0   1
3       0 1 1   1
4       1 0 0   1
5       1 0 1   1
6       1 1 0   1
7       1 1 1   0

        b a x   a
0       0 0 0   0
1       0 0 1   1
2       0 1 0   0
3       0 1 1   1
4       1 0 0   1
5       1 0 1   0
6       1 1 0   1
7       1 1 1   1

        b a x   y
0       0 0 0   1
1       0 0 1   1
2       0 1 0   0
3       0 1 1   1
4       1 0 0   0
5       1 0 1   0
6       1 1 0   1
7       1 1 1   1




        b a x   b
0       0 0 0   1
2       0 1 0   1
3       0 1 1   1
4       1 0 0   1
5       1 0 1   1
6       1 1 0   1

        b a x   a
1       0 0 1   1
3       0 1 1   1
4       1 0 0   1
6       1 1 0   1
7       1 1 1   1

        b a x   y
0       0 0 0   1
1       0 0 1   1
3       0 1 1   1
6       1 1 0   1
7       1 1 1   1




        b a x   b
Gruppe 0:
0       0 0 0   1
Gruppe 1:
2       0 1 0   1
4       1 0 0   1
Gruppe 2:
3       0 1 1   1
5       1 0 1   1
6       1 1 0   1

        b a x   a
Gruppe 1:
1       0 0 1   1
4       1 0 0   1
Gruppe 2:
3       0 1 1   1
6       1 1 0   1
Gruppe 3:
7       1 1 1   1

        b a x   y
Gruppe 0:
0       0 0 0   1
Gruppe 1:
1       0 0 1   1
Gruppe 2:
3       0 1 1   1
6       1 1 0   1
Gruppe 3:
7       1 1 1   1



        b a x   b
Gruppe 0:
0       0 0 0   1
Gruppe 1:
2       0 1 0   1
4       1 0 0   1
Gruppe 2:
3       0 1 1   1
5       1 0 1   1
6       1 1 0   1

0;2         0 - 0
0;4         - 0 0
2;3         0 1 -
2;6         - 1 0
4;5         1 0 -
4;6         1 - 0


Gruppe 0
0;2         0 - 0
Gruppe 1
4;6         1 - 0

0;2;4;6     - - 0

Gruppe 0:
0;4         - 0 0
Gruppe 1:
2;6         - 1 0

0;4;2;6     - - 0

Gruppe 1
2;3         0 1 -
4;5         1 0 -

            0   2   3   4   5   6
0;4;2;6     *   *       *       *
2;3             *   *
4;5                     *   *

b := not x or (not b and a) or (b and not a)


        b a x   a
Gruppe 1:
1       0 0 1   1
4       1 0 0   1
Gruppe 2:
3       0 1 1   1
6       1 1 0   1
Gruppe 3:
7       1 1 1   1


3;7         - 1 1
1;3         0 - 1
4;6         1 - 0
6;7         1 1 -

a := (a and x) or (not b and x) or (b and not x) or (b and a)

        b a x   y
Gruppe 0:
0       0 0 0   1
Gruppe 1:
1       0 0 1   1
Gruppe 2:
3       0 1 1   1
6       1 1 0   1
Gruppe 3:
7       1 1 1   1


0;1         0 0 -
6;7         1 1 -
1;3         0 - 1
3;7         - 1 1

y := (not b and not a) or (b and a) or (not b and x) or (a and x)


b := not x or (not b and a) or (b and not a)
a := (a and x) or (not b and x) or (b and not x) or (b and a)
y := (not b and not a) or (b and a) or (not b and x) or (a and x)

        b a x   b a y
0       0 0 0   1 0 1
1       0 0 1   0 0 0
2       0 1 0   0 0 1
3       0 1 1   0 0 1
4       1 0 0   0 1 0
5       1 0 1   0 1 0
6       1 1 0   0 0 0
7       1 1 1   0 0 1


        b a x   b
0       0 0 0   1
1       0 0 1   0
2       0 1 0   0
3       0 1 1   0
4       1 0 0   0
5       1 0 1   0
6       1 1 0   0
7       1 1 1   0

        b a x   a
0       0 0 0   0
1       0 0 1   0
2       0 1 0   0
3       0 1 1   0
4       1 0 0   1
5       1 0 1   1
6       1 1 0   0
7       1 1 1   0

        b a x   y
0       0 0 0   1
1       0 0 1   0
2       0 1 0   1
3       0 1 1   1
4       1 0 0   0
5       1 0 1   0
6       1 1 0   0
7       1 1 1   1



        b a x   b
0       0 0 0   1

b := (not b and not and not x)

        b a x   a
4       1 0 0   1
5       1 0 1   1

4;5     1 0 -

a := (b and not a)

        b a x   y
0       0 0 0   1
2       0 1 0   1
3       0 1 1   1
7       1 1 1   1

        b a x   y
Gruppe 0
0       0 0 0   1
Gruppe 1
2       0 1 0   1
Gruppe 2
3       0 1 1   1
Gruppe 3
7       1 1 1   1

0;2     0 - 0
2;3     0 1 -
3;7     - 1 1

y := (not b and not x) or (not b and a) or (a and x)


b := (not b and not and not x)
a := (b and not a)
y := (not b and not x) or (not b and a) or (a and x)