0 0 0 0 0 0 1 0 0 0 1 1 2 0 0 1 0 0 3 0 0 1 1 0 4 0 1 0 0 0 5 0 1 0 1 0 6 0 1 1 0 1 7 0 1 1 1 1 8 1 0 0 0 1 9 1 0 0 1 0 10 1 0 1 0 1 11 1 0 1 1 0 12 1 1 0 0 1 13 1 1 0 1 1 14 1 1 1 0 0 15 1 1 1 1 1 1 0 0 0 1 1 6 0 1 1 0 1 7 0 1 1 1 1 8 1 0 0 0 1 10 1 0 1 0 1 12 1 1 0 0 1 13 1 1 0 1 1 15 1 1 1 1 1 Gruppe 1: 1 0 0 0 1 1 8 1 0 0 0 1 Gruppe 2: 6 0 1 1 0 1 10 1 0 1 0 1 12 1 1 0 0 1 Gruppe 3 7 0 1 1 1 1 13 1 1 0 1 1 Gruppe 4 15 1 1 1 1 1 1 0 0 0 1 8;10 1 0 - 0 8;12 1 - 0 0 6;7 0 1 1 - 12;13 1 1 0 - 7;15 - 1 1 1 13;15 1 1 - 1 7;15 - 1 1 1 8;12 1 - 0 0 8;10 1 0 - 0 13;15 1 1 - 1 6;7 0 1 1 - 12;13 1 1 0 - 1 0 0 0 1 7;15 - 1 1 1 8;12 1 - 0 0 Gruppe 1 8;10 1 0 - 0 Gruppe 3 13;15 1 1 - 1 Gruppe 2 6;7 0 1 1 - Gruppe 2 12;13 1 1 0 - 1 0 0 0 1 7;15 - 1 1 1 8;12 1 - 0 0 8;10 1 0 - 0 13;15 1 1 - 1 6;7 0 1 1 - 12;13 1 1 0 - 1 0 0 0 1 1 6 7 8 10 12 13 15 7;15 * * 8;12 * * 8;10 * * 13;15 * * 6;7 * * 12;13 * * 1 * 1 6 7 8 10 12 13 15 8;12 * * 8;10 * * 13;15 * * 6;7 * * 1 * y := (d and not b and not a) or (d and not c and not a) or (d and c and a) or (not d and c and b) or (not d and not c and not b and a)
0 0 0 0 0 1 1 0 0 0 1 1 2 0 0 1 0 0 3 0 0 1 1 1 4 0 1 0 0 0 5 0 1 0 1 1 6 0 1 1 0 1 7 0 1 1 1 0 8 1 0 0 0 0 9 1 0 0 1 0 10 1 0 1 0 1 11 1 0 1 1 0 12 1 1 0 0 0 13 1 1 0 1 0 14 1 1 1 0 0 15 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 3 0 0 1 1 1 5 0 1 0 1 1 6 0 1 1 0 1 10 1 0 1 0 1 Gruppe 0 0 0 0 0 0 1 Gruppe 1 1 0 0 0 1 1 Gruppe 2 3 0 0 1 1 1 5 0 1 0 1 1 6 0 1 1 0 1 10 1 0 1 0 1 0;1 0 0 0 - 1;3 0 0 - 1 1;5 0 - 0 1 6 0 1 1 0 10 1 0 1 0 0 1 3 5 6 10 0;1 * * 1;3 * * 1;5 * * 6 * 10 * y := (not d and not c and not b) or (not d and not c and a) or (not d and not b and a) or (not d and c and b and not a) or (d and not c and b and not a)
b a x b a y 0 0 0 0 1 0 1 1 0 0 1 0 1 1 2 0 1 0 1 0 0 3 0 1 1 1 1 1 4 1 0 0 1 1 0 5 1 0 1 1 0 0 6 1 1 0 1 1 1 7 1 1 1 0 1 1 b a x b 0 0 0 0 1 1 0 0 1 0 2 0 1 0 1 3 0 1 1 1 4 1 0 0 1 5 1 0 1 1 6 1 1 0 1 7 1 1 1 0 b a x a 0 0 0 0 0 1 0 0 1 1 2 0 1 0 0 3 0 1 1 1 4 1 0 0 1 5 1 0 1 0 6 1 1 0 1 7 1 1 1 1 b a x y 0 0 0 0 1 1 0 0 1 1 2 0 1 0 0 3 0 1 1 1 4 1 0 0 0 5 1 0 1 0 6 1 1 0 1 7 1 1 1 1 b a x b 0 0 0 0 1 2 0 1 0 1 3 0 1 1 1 4 1 0 0 1 5 1 0 1 1 6 1 1 0 1 b a x a 1 0 0 1 1 3 0 1 1 1 4 1 0 0 1 6 1 1 0 1 7 1 1 1 1 b a x y 0 0 0 0 1 1 0 0 1 1 3 0 1 1 1 6 1 1 0 1 7 1 1 1 1 b a x b Gruppe 0: 0 0 0 0 1 Gruppe 1: 2 0 1 0 1 4 1 0 0 1 Gruppe 2: 3 0 1 1 1 5 1 0 1 1 6 1 1 0 1 b a x a Gruppe 1: 1 0 0 1 1 4 1 0 0 1 Gruppe 2: 3 0 1 1 1 6 1 1 0 1 Gruppe 3: 7 1 1 1 1 b a x y Gruppe 0: 0 0 0 0 1 Gruppe 1: 1 0 0 1 1 Gruppe 2: 3 0 1 1 1 6 1 1 0 1 Gruppe 3: 7 1 1 1 1 b a x b Gruppe 0: 0 0 0 0 1 Gruppe 1: 2 0 1 0 1 4 1 0 0 1 Gruppe 2: 3 0 1 1 1 5 1 0 1 1 6 1 1 0 1 0;2 0 - 0 0;4 - 0 0 2;3 0 1 - 2;6 - 1 0 4;5 1 0 - 4;6 1 - 0 Gruppe 0 0;2 0 - 0 Gruppe 1 4;6 1 - 0 0;2;4;6 - - 0 Gruppe 0: 0;4 - 0 0 Gruppe 1: 2;6 - 1 0 0;4;2;6 - - 0 Gruppe 1 2;3 0 1 - 4;5 1 0 - 0 2 3 4 5 6 0;4;2;6 * * * * 2;3 * * 4;5 * * b := not x or (not b and a) or (b and not a) b a x a Gruppe 1: 1 0 0 1 1 4 1 0 0 1 Gruppe 2: 3 0 1 1 1 6 1 1 0 1 Gruppe 3: 7 1 1 1 1 3;7 - 1 1 1;3 0 - 1 4;6 1 - 0 6;7 1 1 - a := (a and x) or (not b and x) or (b and not x) or (b and a) b a x y Gruppe 0: 0 0 0 0 1 Gruppe 1: 1 0 0 1 1 Gruppe 2: 3 0 1 1 1 6 1 1 0 1 Gruppe 3: 7 1 1 1 1 0;1 0 0 - 6;7 1 1 - 1;3 0 - 1 3;7 - 1 1 y := (not b and not a) or (b and a) or (not b and x) or (a and x) b := not x or (not b and a) or (b and not a) a := (a and x) or (not b and x) or (b and not x) or (b and a) y := (not b and not a) or (b and a) or (not b and x) or (a and x)
b a x b a y 0 0 0 0 1 0 1 1 0 0 1 0 0 0 2 0 1 0 0 0 1 3 0 1 1 0 0 1 4 1 0 0 0 1 0 5 1 0 1 0 1 0 6 1 1 0 0 0 0 7 1 1 1 0 0 1 b a x b 0 0 0 0 1 1 0 0 1 0 2 0 1 0 0 3 0 1 1 0 4 1 0 0 0 5 1 0 1 0 6 1 1 0 0 7 1 1 1 0 b a x a 0 0 0 0 0 1 0 0 1 0 2 0 1 0 0 3 0 1 1 0 4 1 0 0 1 5 1 0 1 1 6 1 1 0 0 7 1 1 1 0 b a x y 0 0 0 0 1 1 0 0 1 0 2 0 1 0 1 3 0 1 1 1 4 1 0 0 0 5 1 0 1 0 6 1 1 0 0 7 1 1 1 1 b a x b 0 0 0 0 1 b := (not b and not and not x) b a x a 4 1 0 0 1 5 1 0 1 1 4;5 1 0 - a := (b and not a) b a x y 0 0 0 0 1 2 0 1 0 1 3 0 1 1 1 7 1 1 1 1 b a x y Gruppe 0 0 0 0 0 1 Gruppe 1 2 0 1 0 1 Gruppe 2 3 0 1 1 1 Gruppe 3 7 1 1 1 1 0;2 0 - 0 2;3 0 1 - 3;7 - 1 1 y := (not b and not x) or (not b and a) or (a and x) b := (not b and not and not x) a := (b and not a) y := (not b and not x) or (not b and a) or (a and x)