Re: Quine Mc Cluskey and Automat

	b a x	b a y
0	0 0 0	0 1 0
1	0 0 1	1 0 0
2	0 1 0	1 0 0
3	0 1 1	0 0 0
4	1 0 0	0 0 0
5	1 0 1	0 0 1
6	1 1 0	1 0 0
7	1 1 1	1 1 1


	b a x	b
0	0 0 0	0
1	0 0 1	1
2	0 1 0	1
3	0 1 1	0
4	1 0 0	0
5	1 0 1	0
6	1 1 0	1
7	1 1 1	1

	b a x	a
0	0 0 0	1
1	0 0 1	0
2	0 1 0	0
3	0 1 1	0
4	1 0 0	0
5	1 0 1	0
6	1 1 0	0
7	1 1 1	1

	b a x	y
0	0 0 0	0
1	0 0 1	0
2	0 1 0	0
3	0 1 1	0
4	1 0 0	0
5	1 0 1	1
6	1 1 0	0
7	1 1 1	1




	b a x	b
1	0 0 1	1
2	0 1 0	1
6	1 1 0	1
7	1 1 1	1

	b a x	a
0	0 0 0	1
7	1 1 1	1

	b a x	y
5	1 0 1	1
7	1 1 1	1


	b a x	b
Gruppe 1:
1	0 0 1	1
2	0 1 0	1
Gruppe 2:
6	1 1 0	1
Gruppe 2:
7	1 1 1	1

	b a x	a
Gruppe 0:
0	0 0 0	1
Gruppe 3:
7	1 1 1	1

	b a x	y
Gruppe 2:
5	1 0 1	1
Gruppe 3:
7	1 1 1	1



	b a x	b
Gruppe 1:
1	0 0 1	1
2	0 1 0	1
Gruppe 2:
6	1 1 0	1
Gruppe 2:
7	1 1 1	1

1       0 0 1
2;6     - 1 0
6;7     1 1 -

Minimale Restueberdeckung

        1   2   6   7
1       *
2;6         *   *
6;7             *   *

b <= (not b and not a and x) or (a and not x) or (b and a)

	b a x	a
Gruppe 0:
0	0 0 0	1
Gruppe 3:
7	1 1 1	1

a <= (b and a and x) or (not b and not a and not x)

	b a x	y
Gruppe 2:
5	1 0 1	1
Gruppe 3:
7	1 1 1	1

5;7     1 - 1

y <= (b and x)



b <= (not b and not a and x) or (a and not x) or (b and a)
a <= (b and a and x) or (not b and not a and not x)
y <= (b and x)

Image 20230924_201939